
The FloatHub Communications
Protocol

Core Protocol Version: 1
Security Envelope Version: 2

This Document Version: 0.35

Bernhard Borges
∗
and Thor Sigvaldason

†

May 29, 2017

Abstract

We define a compact protocol by which a device equipped with sen-
sors can communicate various readings (GPS location, battery voltages,
etc.) to a data receiver over a simple socket connection. This specification
includes a “core” protocol of how to markup data readings, an outer secu-
rity envelope protocol, and a minimal handshake with the receiving server.
This is the protocol used by the FloatHub vessel monitoring system.

∗
Modiot Labs (bb@modiot.com)

†
Modiot Labs (thor@modiot.com)

1 Introduction

As part of designing a device to monitor marine vessel data, we needed a simple
method to communicate this information. There were two main constraints
on the protocol design: 1) the device is based around an 8-bit microcontroller
architecture which has very limited storage and processing capabilities, and
2) it was assumed that bandwidth could be expensive. The first constraint
precluded the uses of some relatively common data transmission approaches
such as a json object exchanged over http. The second dictated that we avoid
as much verbosity as was reasonably possible in the expression of the underlying
data. The result is a very simple and compact approach to marking up marine
related information and sending it to a receiving server.

Before turning to a more detailed description, we will briefly raise our
thoughts on security. There are many potential concerns related to the trans-
mission of boat data, particularly location information. Personal security while
transiting dangerous areas, sensitive vessel statistics during racing events, and
basic privacy all suggest that transmitting in the clear would be undesirable.
Accordingly, we have baked a reasonably well understood and vetted encryption
standard into the overall protocol as part of an outer envelope. This is not an
optional feature.

We used early drafts of this document internally during the development
of the FloatHub system. It helped to make sure those working on the device
side and those on the data receiver side had a concrete understanding of the
correct format of the messages traveling from one to the other. We imagine
the reader might use this specification to implement their own data receiving
mechanism, perhaps for some other purpose than was originally intended by
Modiot Labs and the FloatHub team. Others might be interested in building
their own devices or modifying their existing FloatHubs to expand their use
while still talking to our backend systems. We actively encourage both sorts of
activities and are happy to receive feedback and questions.

2 Core Protocol

We use the term “core” protocol to distinguish it from the “security” protocol.
The core specification explains how the data is marked up, while the security
one explains how it is encrypted before transmission.

1

2.1 Message Structure

A message consists of a header and body. The header includes some identifying
structure (i.e. $ and : as element separators), a message type identifier, a device
id, and a core protocol version number. The header looks like this:

$

Message Type︷︸︸︷
FHx:yyyyyyyy︸ ︷︷ ︸

Device ID

:

Protocol
Version

↓
z$

To take a concrete example, if a FloatHub device with an id of outofbox
where using core protocol version 1 to transmit an FHA message (see below),
then the header would be:

$FHA:outofbox:1$

The body of the message then follows directly after the trailing $ and varies
depending on the message type.

Note that as of this writing the core protocol specification is at version 1.
That is, all transmissions which comply with the specification in this document
should indicate 1 as their core protocol version. Also, note that the legal charac-
ters for the device id are any combination of letters and numbers and that these
values are case sensitive. Blanks, punctuation, or other symbols are not permit-
ted, meaning that it is an 8 character fixed field1. This gives 26 + 26 + 10 = 62
characters for each of the eight positions, resulting in a namespace of 628 pos-
sible device ids (roughly 218 trillion).

2.2 Sample-Based Messages: FHA

The FloatHub device samples various sensors several times a second. At regular
intervals it sends the current values of those samples to the receiving server using
an FHA message. When the vessel is in motion these messages are communicated
roughly twice a minute. When the vessel is stationary, they are sent approxi-
mately 10 minutes apart. The body of an FHA message consists of labeled data
values that represent the sample values at the time they were measured. To
take a concrete but simple example:

$FHA:outofbox:1$,U:11105809042014,T:68.80,P:29.6

Each piece of data starts with a comma (,), then a label (U, T, P etc.),
followed by a colon (:) that separates the label from the actual value. In this
example, we note that the sample time (U) was 11:10:58 am on April 9, 2014.
Time is always formatted hhmmssddMMYYYY as detailed in Table 1 and should
always be UTC (never adjusted for any local timezone).

If a time stamp is present, it is important to understand that this is the
point in time where all data in this message were sampled. This could be hours,

1This is somewhat similar to the MAC address approach used by network adapters

2

Table 1: Time and Date Elements

Element Description

hh hours in 2 digit format
mm minutes in 2 digit format
ss seconds in 2 digit format
dd day in 2 digit format
MM month in 2 digit format

YYYY year in 4 digit format

days, or conceivably weeks from the the time of transmission. The FloatHub
device has a small amount of on-board EEPROM memory where it stores data
it cannot successfully transmit. There is usually space for a few thousand such
sets of data, so it is possible that after coming into range of a communications
network a device might transmit many messages in rapid succession.

Conversely, if a time stamp is not present, it means that the device has some
data to convey and has a communication uplink, but does not have a GPS fix
or other reliable source of current UTC time. In this case, the best guess for
the timestamp of the conveyed information is the time at which the message is
received.

Table 2: FHA Data Labels and Types

Label Type Note

U Timestamp UTC Time in hhmmssddMMYYYY Format
T Temperature Degrees Fahrenheit
P Pressure Inches of Mercury (InHg)
L Latitude Degrees & Decimal Minutes (e.g. 43 15.3570N)
O Longitude Degrees & Decimal Minutes (e.g. 079 03.7733)
A Altitude Meters above Sea Level
H HDOP Horizontal Dilution of Precision of GPS Fix
S SOG Speed over Ground (in knots)
B Bearing Degrees True
N Satellites Number in View

Vx Battery Voltage of Battery x
Cx Charger Voltage of Charger x
R STW Speed through Water (in knots)
D Depth Depth Below Transducer (in meters)
J Wind Speed Knots
K Wind Dir. Degrees True
Y Water Temp. Degrees Fahrenheit

The full list of labels and data types is shown in Table 2. They are shown in
the order likely to appear in current implementations, but this protocol makes

3

no guarantee about the order in which they will appear in the body of an FHA

message.

2.3 Point-in-Time Messages: FHB

Where FHA messages are timer driven, reporting every so many number of sec-
onds or minutes, FHB messages are event driven; something occurred now . The
only current application of the FHB message is to pump events, but it is not dif-
ficult to imagine future extensions to other event driven information in a marine
setting.

The structure is:

$FHB:outofbox:1$,U:03254015022015,P3:1

In this example, Pump 3 (P3) turned on (1) at 3:25:40 am on February 15,
2015. Unlike an FHA message, this does not mean that the pump happened to
be on when the device sampled it. It means this is the timestamp of when the
pump was turned on. When the pump turns off, it will send a similar message
such as:

$FHB:outofbox:1$,U:04261315022015,P3:0

Indicating that the same pump turned off (0) at 04:26:13 am on the same
day. This enables server side calculations of pump duration, frequency. etc.

Note that FHB analysis is complicated by the fact that communications can
be intermittent and it is conceivable that the device will deliver out-of-order
messages. Thus it is possible for a pump off message to arrive before a pump on
message. It is also possible for FHBmessages to be delivered without a timestamp
(if there is no current GPS fix). As with the analogous case for FHA messages,
the current time is the best guess for a timestamp.

In the most diabolical of cases, if the device sees a pump event but has no
current time fix and no current communications link, it will not store the event
for future transmission. Thus in the quite rare event that communications are
going in and out while there is simultaneously no GPS fix, it is possible to
receive a pump on message and never see the corresponding pump off message
(or to see a pump go off when no message was received to indicate it had first
turned on).

3 Outer Security Envelope: Base64/AES

As mentioned above, before an FHA or FHB message is sent, we encrypt it using
AES. In slightly greater detail, we first encrypt using AES with cipher block
chaining, the common AES-CBC approach. Each device has a 16 byte encryp-
tion key stored on it.2 Because CBC also requires an initialization vector, we

2The key can be locally set or updated via the device’s built-in web interface.

4

generate a pseudo-random one for each transmission but include it in the trans-
mission itself along with the encrypted message. We then prepend an FHS header
to the message in plain text so that the receiver knows whose transmission it is
and thus how to decrypt it. The steps are:

1. Choose a pseudo-random IV (initialization vector)

2. Use the device’s key and IV to encrypt the FHx message

3. Prepend the cyphertext with the IV in plain text

4. Base64 encode the IV and cyphertext concatenation

5. Prepend the above with an FHS header (including comma before body)

6. Transmit the above over a simple socket connection

7. Terminate the message transmission with \r (return) and \n (newline)

This results in a messages that looks like (shortened for readability, so not
an actually decryptable message):

$FHS:outofbox:2$,eGIfK/pryFff4gzPBpbI4ZFo9iO\r\n
The protocol version in this example is 2, and note that this is the version of

the security protocol we are describing here (as distinct from the core protocol).
There was a security version 1 of this protocol that existed for some time during
early development, but it is no longer supported.

Although AES-CBC is a reasonable encryption protocol in this context, it is
important to point out that the device and its transmissions are still vulnerable
to traffic analysis; a dedicated party could readily determine that transmissions
from a given IP address are traveling to a given IP address, and use the un-
changing textual elements $FHS:yyyyyyyy:2$ as an identifier. Combined with
IP location services, it is possible for such a third party to determine to close
proximity where a set of transmissions from a given device are occurring. This
is a risk of similar magnitude to tracking a cell phone based on it’s IMEI number
while on a cellular network or it’s MAC/IP address while on a WiFi network.3

4 A Note on other FHx Message Types

If you connect a computer to the USB port on a FloatHub device, you may see
messages that begin $FHx other than the FHA, FHB, or FHS types. If the code
on a device has been compiled with one or more debugging flags turned on,
there may be a large volume of these other message types. Strictly speaking,
these are not part of the communications protocol; they are never sent out over
the communications uplink. They were included to keep console output human
readable but also make it readily parsable into different data types. Table 3
lists these other message types.

3More pessimistically put, this risk is in addition to cellular or WiFi tracking, since the
device is susceptible to these risks as well.

5

Table 3: Other FHx Message Types

Header Description

FHC Console Message (similar to FHA, much more frequent)
FHD Debugging Message
FHH Help Message

5 Handshaking

The need for handshaking in this context is extremely limited. Because the
devices generating and transmitting the data have very constrained computa-
tional and storage resources, they simply require an acknowledgment that the
data was received and sensibly decoded. A failure to decode the Base64/AES
envelope is equivalent to a traditional checksum error; somewhere in the cre-
ation, transmission, or decoding process, the message was corrupted.

Given the simple acknowledgment structure, we adopt the very simple con-
vention that if the device receives back a message beginning:

FHS OK

It is safe for it to consider the current message successfully stored on the
remote data receiver. It can then delete that data and, optionally, send the
next message whenever it is ready to do so.

6

